
FAST FOURIER
TRANSFORM

EEEN 462 – ANALOGUE COMMUNICATION
Friday, December 19, 2025

FOURIER TRANSFORM (RECAP)

1. Fourier Transform decomposes a function into
its constituent frequencies.

X(f) = ∫-∞
∞ x(t) e-j2πft dt

1. For continuous signals, we use the
Continuous Fourier Transform (CFT).

2. For discrete signals, we use the Discrete
Fourier Transform (DFT).

3. Key Insight: Any periodic signal can be
represented as a sum of sinusoids with
different frequencies, amplitudes, and phases.

DISCRETE FOURIER TRANSFORM - RECAP

1. Discrete-time signals, we use the DFT:
X[k] = Σn=0

N-1 x[n] · e-j(2π/N)kn, for k = 0, 1, ..., N-1
where:
• x[n] is the discrete-time signal (N samples)
• X[k] is the DFT output (frequency bins)
• N is the number of samples
• k represents frequency index
2. Inverse DFT (IDFT) reconstructs the time-domain signal from

frequency components:
x[n] = (1/N) Σk=0

N-1 X[k] · ej(2π/N)kn, for n = 0, 1, ..., N-1

THE NEED FOR FAST FOURIER TRANSFORM

Direct computation of DFT requires O(N²) operations:
• For each of N frequency bins (k values), we need N complex

multiplications and N-1 additions
• Total: N × N = N² complex multiplications

N (Samples)
DFT

Operations

FFT

Operations

Speed-up

Factor

64 4,096 384 10.7x

256 65,536 2,048 32x

1024 1,048,576 10,240 102x

4096 16,777,216 49,152 341x

FFT USES DIVIDE AND CONQUER APPROACH

The key insight behind FFT is the divide-and-
conquer strategy as follows:
1. Divide the N-point DFT into two N/2-point DFTs
2. Exploit symmetry and periodicity of the complex

exponential (twiddle factors)
3. Recursively apply until we reach 2-point DFTs

(butterflies)

RADIX-2 FFT ALGORITHM

• The most common FFT is the radix-2 Cooley-Tukey algorithm, which
requires N to be a power of 2.

• Algorithm steps:
1. If N = 1, return x[0] (base case)
2. Separate x[n] into even and odd indexed samples:
• Even: xₑ[m] = x[2m] for m = 0, 1, ..., N/2-1
• Odd: xₒ[m] = x[2m+1] for m = 0, 1, ..., N/2-1

3. Compute N/2-point FFT of both sequences: Xₑ[k] and Xₒ[k]
4. Combine using the butterfly operation:

X[k] = Xₑ[k] + WN
k · Xₒ[k]

X[k+N/2] = Xₑ[k] - WN
k · Xₒ[k]

where WN
k = e-j(2π/N)k are the twiddle factors

The algorithm recursively applies this decomposition until reaching 2-
point DFTs (butterflies). Each stage has N/2 butterflies, and there are
log₂N stages.

FFT BUTTERFLY STRUCTURE

1. The butterfly is the fundamental computational unit of the FFT:
2. Each butterfly performs:

1. One complex multiplication (B × WN
k)

2. One complex addition (A + WB)
3. One complex subtraction (A - WB)

3. Key Property: The butterfly structure exploits the symmetry of
twiddle factors: WN

k+N/2 = -WN
k, which reduces computations by

half.

DECIMATION-IN-TIME (DIT) FFT

1. In Decimation-in-Time (DIT) FFT, we split the time-domain
sequence into even and odd parts:

X[k] = Σn even x[n] WN
kn + Σn odd x[n] WN

kn

= Σm=0
N/2-1 x[2m] WN

2mk + Σm=0
N/2-1 x[2m+1] WN

k(2m+1)

2. Since WN
2 = WN/2, we get:

X[k] = Σm=0
N/2-1 x[2m] WN/2

mk + WN
k Σm=0

N/2-1 x[2m+1] WN/2
mk

= Xₑ[k] + WN
k Xₒ[k]

DECIMATION-IN-FREQUENCY (DIF) FFT

• In Decimation-in-Frequency (DIF) FFT, we split the frequency-
domain sequence into even and odd parts:

• For k even: X[2r] = Σn=0
N/2-1 (x[n] + x[n+N/2]) WN/2

rn

• For k odd: X[2r+1] = Σn=0
N/2-1 (x[n] - x[n+N/2]) WN

n WN/2
rn

KEY DIFFERENCES BETWEEN DIT AND DIF

Aspect DIT FFT DIF FFT

Decomposition Time sequence split Frequency sequence split

Butterfly Input Natural order Natural order

Butterfly Output Bit-reversed order Natural order

Twiddle Factor Between stages Before butterfly

Complexity Same: O(N log N) Same: O(N log N)

FFT COMPLEXITY ANALYSIS

1. The computational savings of FFT compared to DFT are
dramatic:
a) DFT: N² complex multiplications
b) FFT: (N/2) log₂N complex multiplications

2. For an N-point FFT:
• Number of stages: log₂N
• Butterflies per stage: N/2
• Complex multiplications per butterfly: 1
• Total complex multiplications: (N/2) log₂N
• Complex additions: N log₂N

WRITING FFT FUNCTION IN MATLAB - (Radix-2 Cooley-Tukey)

function X = myFFT(x)
N = length(x);

if bitand(N, N-1) ~= 0 % Check if N is power of 2
error('Input length must be a power of 2');

end
if N == 1 % Base case

X = x;
return;

end
even = myFFT(x(1:2:end)); % Split into even and odd indices

odd = myFFT(x(2:2:end));
k = 0:N/2-1; % Compute twiddle factors
W = exp(-2*pi*1i*k/N); % Twiddle factors

X = [even + W.*odd, even - W.*odd]; % Combine results
end

APPLICATIONS OF FFT

1. Spectral Analysis
• Analyzing frequency content of signals (audio, vibrations, RF)

2. Communications
OFDM in 4G/5G, DSL, WiFi, software-defined radio

3. Image Processing
JPEG compression, filtering, convolution via multiplication

4. Medical
MRI, ECG analysis, ultrasound imaging

5. Other applications: audio compression (MP3), speech recognition,
radar, sonar, seismic analysis, and solving partial differential equations.

EXAMPLE: USING INBUILT FFT FUNCTION IN MATLAB

• % Generate a test signal
Fs = 1000; % Sampling frequency
t = 0:1/Fs:1-1/Fs; % Time vector
f1 = 50; f2 = 120; % Frequencies
x = 0.7*sin(2*pi*f1*t) + sin(2*pi*f2*t);

% Compute FFT
N = length(x);
X = fft(x);
X_mag = abs(X); % Magnitude spectrum

% Frequency vector
f = (0:N-1)*(Fs/N);
plot(f, X_mag)
xlabel('Frequency (Hz)')
ylabel('Magnitude')

PRACTICAL CONSIDERATIONS

1. Windowing
• Apply window functions (Hamming, Hanning) to reduce spectral

leakage from finite observation intervals.
2. Aliasing
• Ensure sampling rate ≥ 2× maximum frequency (Nyquist theorem)

to avoid aliasing.
3. Zero Padding
• Add zeros to increase FFT size for better frequency resolution

(interpolation in frequency domain).

CONCLUSION

1. Key Takeaways:
• FFT reduces DFT complexity from O(N²) to O(N log N)
• Radix-2 FFT uses divide-and-conquer with butterfly operations
• Both DIT and DIF approaches provide the same computational benefits
• FFT enables real-time spectral analysis in countless applications
2. Why FFT Matters for EE Students
• Understanding FFT is essential for:
• Digital signal processing (DSP) system design
• Communications engineering (OFDM, software-defined radio)
• Image and audio processing applications
• Embedded systems with real-time signal processing requirements

	Slide 1: FAST FOURIER TRANSFORM
	Slide 2: FOURIER TRANSFORM (RECAP)
	Slide 3: DISCRETE FOURIER TRANSFORM - RECAP
	Slide 4: THE NEED FOR FAST FOURIER TRANSFORM
	Slide 5: FFT USES DIVIDE AND CONQUER APPROACH
	Slide 6: RADIX-2 FFT ALGORITHM
	Slide 7: FFT BUTTERFLY STRUCTURE
	Slide 8: DECIMATION-IN-TIME (DIT) FFT
	Slide 9: DECIMATION-IN-FREQUENCY (DIF) FFT
	Slide 10: KEY DIFFERENCES BETWEEN DIT AND DIF
	Slide 11: FFT COMPLEXITY ANALYSIS
	Slide 12: WRITING FFT FUNCTION IN MATLAB - (Radix-2 Cooley-Tukey)
	Slide 13: APPLICATIONS OF FFT
	Slide 14: EXAMPLE: USING INBUILT FFT FUNCTION IN MATLAB
	Slide 15: PRACTICAL CONSIDERATIONS
	Slide 16: CONCLUSION

