



## EEEN 462 – ANALOGUE COMMUNICATION

### ANALOGUE QUADRATURE AMPLITUDE MODULATION (QAM) - STUDY GUIDE/REVISION

#### 1. INTRODUCTION TO ANALOG QAM

##### **Key Concepts:**

###### **1. Definition**

Analog QAM transmits two independent message signals simultaneously over the same carrier frequency by modulating **in-phase (I)** and **quadrature (Q)** carriers (90° out of phase).

**2. Core Principle:** Utilizes **orthogonality** of sine/cosine to separate signals.

**3. Motivation for QAM**

- **Spectral efficiency:** Transmits two signals in the same bandwidth as one AM/DSB-SC signal.
- Foundational for modern digital QAM (e.g., Wi-Fi, cable modems).

###### **4. Comparison:**

| Modulation | Bandwidth Efficiency     | Demodulation Complexity  |
|------------|--------------------------|--------------------------|
| AM         | Low (2×B)                | Simple (envelope detect) |
| DSB-SC     | Moderate (2×B)           | Coherent required        |
| <b>QAM</b> | <b>2×B for 2 signals</b> | Coherent required        |

#### 2. MATHEMATICAL REPRESENTATION

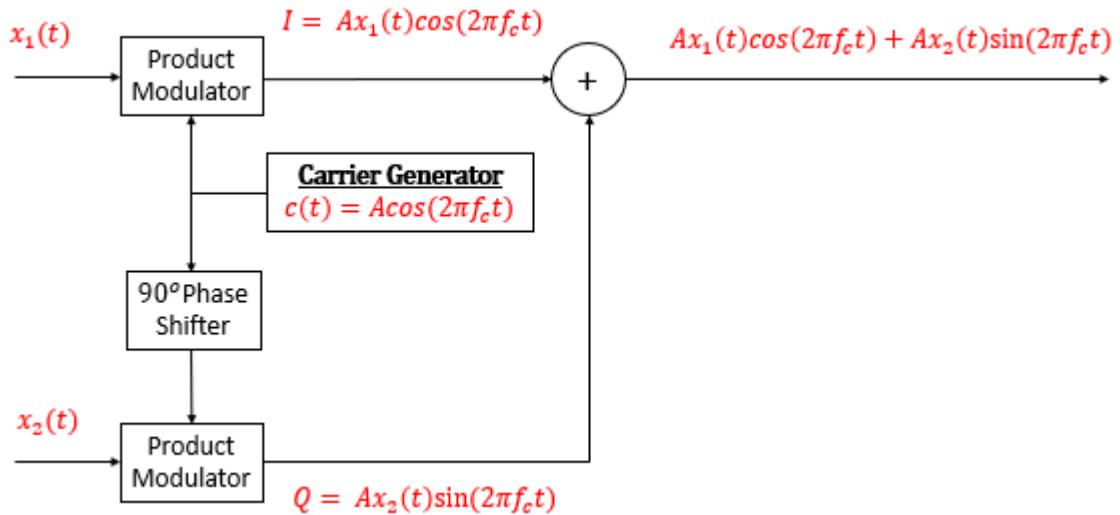
##### **Modulated Signal:**

$$s(t) = I(t) \cos(2\pi f_c t) - Q(t) \sin(2\pi f_c t)$$

I(t): In-phase baseband signal (e.g., voice, data).

Q(t): Quadrature baseband signal.

f<sub>c</sub>: Carrier frequency.


##### **Bandwidth:**

- Each baseband signal (I(t), Q(t)) has bandwidth *B*.
- **QAM bandwidth = 2*B*** (same as DSB-SC but carries **two signals**).

### Orthogonality Proof:

$$\int_0^T \cos(2\pi f_c t) \sin(2\pi f_c t) dt = 0 \quad (\text{for } f_c \gg 1/T)$$

### 3. MODULATION PROCESS

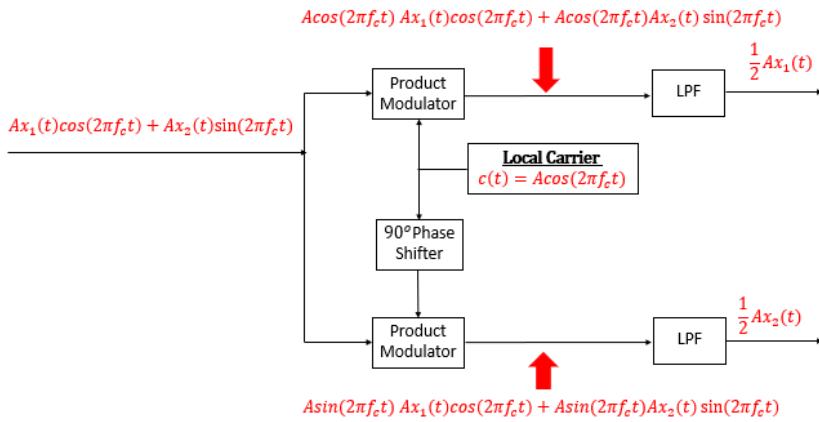


#### Steps:

1. Multiply  $I(t)$  by  $\cos(2\pi f_c t)$ .
2. Multiply  $Q(t)$  by  $-\sin(2\pi f_c t)$ .
3. Sum the results to form  $s(t)$ .

#### Example:

$$I(t) = m_1(t) = \cos(2\pi f_m t), Q(t) = m_2(t) = \sin(2\pi f_m t)$$


Modulated signal:

$$s(t) = \cos(2\pi f_m t) \cos(2\pi f_c t) - \sin(2\pi f_m t) \sin(2\pi f_c t) = \cos(2\pi(f_c + f_m)t)$$

### 4. DEMODULATION PROCESS

#### Coherent Detection Required:

- Local oscillators must match transmitter carrier frequency/phase.



**Steps:**

1. Multiply  $s(t)$  by  $\cos(2\pi f_c t)$  and low-pass filter to recover  $I(t)$ :

$$s(t) \cos(2\pi f_c t) = I(t) \cos^2(2\pi f_c t) - Q(t) \sin(2\pi f_c t) \cos(2\pi f_c t)$$

$$\text{LPF output} = \frac{I(t)}{2}$$

2. Multiply  $s(t)$  by  $-\sin(2\pi f_c t)$  and filter to recover  $Q(t)$ :

$$\text{LPF output} = \frac{Q(t)}{2}$$

**Impact of Phase Error ( $\phi$ ):**

- Recovered signals:

$$I'(t) = I(t) \cos \phi - Q(t) \sin \phi, \quad Q'(t) = I(t) \sin \phi + Q(t) \cos \phi$$

**Crosstalk:**  $I(t)$  leaks into  $Q(t)$  and vice versa.

## 5. ADVANTAGES & DISADVANTAGES

**Advantages:**

- **Bandwidth efficiency:** Two signals in the bandwidth of one DSB-SC signal.
- **Compatibility:** Forms the basis for digital QAM (e.g., 16-QAM, 64-QAM).

**Disadvantages:**

- **Sensitivity:** Requires precise carrier synchronization (phase/frequency).
- **Vulnerability:** Susceptible to channel noise and amplitude distortion.

## 6. APPLICATIONS

### 1. Analogue Television

- **NTSC/PAL:** Chrominance (colour) signals modulated via QAM on a subcarrier.

### 2. Legacy Microwave Systems:

Analog point-to-point communication.

### 3. Software-Defined Radio (SDR):

Demonstrates analogue QAM principles.